5 years ago

Informed baseline subtraction of proteomic mass spectrometry data aided by a novel sliding window algorithm

Patty J. Solomon, Christopher J. Bagley, Tyman E. Stanford

Abstract

Background

Proteomic matrix-assisted laser desorption/ionisation (MALDI) linear time-of-flight (TOF) mass spectrometry (MS) may be used to produce protein profiles from biological samples with the aim of discovering biomarkers for disease. However, the raw protein profiles suffer from several sources of bias or systematic variation which need to be removed via pre-processing before meaningful downstream analysis of the data can be undertaken. Baseline subtraction, an early pre-processing step that removes the non-peptide signal from the spectra, is complicated by the following: (i) each spectrum has, on average, wider peaks for peptides with higher mass-to-charge ratios (m/z), and (ii) the time-consuming and error-prone trial-and-error process for optimising the baseline subtraction input arguments. With reference to the aforementioned complications, we present an automated pipeline that includes (i) a novel ‘continuous’ line segment algorithm that efficiently operates over data with a transformed m/z-axis to remove the relationship between peptide mass and peak width, and (ii) an input-free algorithm to estimate peak widths on the transformed m/z scale.

Results

The automated baseline subtraction method was deployed on six publicly available proteomic MS datasets using six different m/z-axis transformations. Optimality of the automated baseline subtraction pipeline was assessed quantitatively using the mean absolute scaled error (MASE) when compared to a gold-standard baseline subtracted signal. Several of the transformations investigated were able to reduce, if not entirely remove, the peak width and peak location relationship resulting in near-optimal baseline subtraction using the automated pipeline. The proposed novel ‘continuous’ line segment algorithm is shown to far outperform naive sliding window algorithms with regard to the computational time required. The improvement in computational time was at least four-fold on real MALDI TOF-MS data and at least an order of magnitude on many simulated datasets.

Conclusions

The advantages of the proposed pipeline include informed and data specific input arguments for baseline subtraction methods, the avoidance of time-intensive and subjective piecewise baseline subtraction, and the ability to automate baseline subtraction completely. Moreover, individual steps can be adopted as stand-alone routines.

Publisher URL: https://link.springer.com/article/10.1186/s12953-016-0107-8

DOI: 10.1186/s12953-016-0107-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.